
AN IMPROVED SNR ESTIMATOR FOR SPEECH ENHANCEMENT 
 

Yao Ren,  Michael T. Johnson 
 

Speech and Signal Processing Lab, Marquette University, Milwaukee, WI 53201 USA 
{yao.ren, mike.johnson}@marquette.edu 

 
ABSTRACT 

 
In this paper, we propose an MMSE a priori SNR estimator 
for speech enhancement. This estimator has similar benefits 
to the well-known decision-directed approach, but does not 
require an ad-hoc weighting factor to balance the past a 
priori SNR and current ML SNR estimate with smoothing 
across frames. Performance is evaluated in terms of 
estimation error and segmental SNR using the standard 
logSTSA speech enhancement method. Experimental results 
show that, in contrast with the decision-directed estimator 
and ML estimator, the proposed SNR estimator can help 
enhancement algorithms preserve more weak speech 
information and efficiently suppress musical noise. 
 

Index Terms— Speech enhancement, least mean square 
error methods, maximum likelihood estimation 

1. INTRODUCTION 

The Ephraim-Malah (logSTSA) filter [1] is a Minimum 
Mean Square Error (MMSE) estimator of the clean speech 
spectral amplitude for speech enhancement. One important 
factor in the logSTSA filter is the smoothing behavior of the 
decision-directed (D-D) a priori SNR estimator which has 
significant impact on reducing musical noise artifacts. This 
estimator is the weighted sum of two terms, the SNR value 
from the previous frame and an ML SNR estimate from the 
current frame. Various aspects of the approach for SNR 
estimation have been investigated in previous work. Cappe 
[2] demonstrated this estimator reduces low-level musical 
noise by limiting the smallest allowable value of the a priori 
SNR. Recently, Erkelens et al. [3] suggested the insertion of 
a compensation factor to correct the bias caused by the 
decision-directed approach, Plapous and Marro [4] 
implemented a method to improve the estimator adaptation 
speed, and Hasan et al. [5] designed an adaptive  scheme for 
updating the weighting factor. All of these approaches focus 
on the adaptation component or weighting factor of the SNR 
estimator, retaining the ML estimation approach. In this 
paper, we use a new approach and directly derive an MMSE 
estimator of the a priori SNR, which results in an expression 
that implicitly factors in information from previous frames. 

Thus this estimator combines the information from both 
parts of the original D-D estimator in an MMSE sense, 
without requiring an experimentally pre-specified weighting 
factor.  

In Section 2, we review the D-D approach of Ephraim 
Malah. Section 3 presents a derivation of the proposed 
MMSE a priori estimator. Results are presented and 
discussed in Section 4, with conclusions in Section 5.  

2. A PRIORI SNR ESTIMATION 

The decision-directed a priori SNR estimator of Ephraim 
and Malah [6] is given by  
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where ( )k nξ , ( )kA n , ( , )d k nλ , and ( )k nγ denote the a priori 
SNR, the spectral amplitude, the noise variance and the a 
posteriori SNR of the kth spectral component in the nth 
analysis frame, respectively. The P function is given by: 
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This estimator is called a “decision-directed” type estimator, 
because it is updated based on the previous frame’s 
amplitude estimate. As can be seen from the equation, the 
first term comes from the amplitude estimator of the 
previous frame while the second term is an ML estimate of 

kξ  determined from the a posteriori SNR ( )k nγ . 
The motivation for using an ML approach is that ML 

estimation can estimate an unknown parameter of a given 
PDF without any prior assumptions on the parameter. This 
estimator maximizes the joint conditional PDF of noisy 
spectral amplitude ( )kY n  given clean signal variance 

( )x kλ and noise variance ( )d kλ  [6]. 
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This estimation results in the ML a priori SNR estimator:  
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which can be easily implemented using a recursive average 
as follows:  
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where a and b are pre-specified constants.  
Analysis [2] has shown that the underlying 

characteristic for eliminating musical noise artifacts lies in 
the recursive calculation of the a priori SNR of (1): 
when kγ stays below or equal to 0dB, the second term is zero 
and the a priori SNR becomes a smoothed version of the a 
posteriori SNR; whereas when kγ  is larger than 0dB, the 
second term dominates and the k̂ξ  estimate follows 
the kγ estimate very closely. In conjunction with the log-
STSA filter, this behavior leads to smoothly increasing noise 
attenuation in low-energy and speech absent segments of the 
signal.  

3. PROPOSED MMSE ESTIMATOR 

The weighting factor α in (1) provides a tradeoff between 
the a priori SNR from preceding frames and the current a 
posteriori SNR, smoothing out the overall SNR estimate 
trajectory. This factor is often set as 0.98 [6], based on 
experimental performance. Ideally this smoothing factor 
should be a variable that is small during the transient parts of 
the waveform to allow rapid adaptation and is large during 
steady speech segments [7]. Here we approach the problem 
of SNR estimation from an MMSE estimation perspective, 
leading to the elimination of the empirical weighting factor 
in favor of an estimator that directly incorporates previous 
frame information.  

This new estimator is derived to minimize mean square 
error of the a priori SNR estimation. In [6], the a priori 
SNR is defined as the ratio between the variances of the kth 
spectral components of the speech and the noise 
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Similarly, we use the instantaneous values of speech and 
noise power to create an a priori SNR random variable kz , 
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where ka and kd are the instantaneous spectral amplitudes of 
the speech and noise in the kth frequency bin, respectively. 
An MMSE estimator of kξ  is obtained from the conditional 
mean  
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Following the same assumptions as the traditional 
logSTSA filter, ka and kd are assumed Rayleigh distributed: 
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For convenience of notation the a priori SNR is denoted 
as 2 2/ /k k k k kz s n a d= , so that ks and kn have exponential 
distributions 
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This results in kz  having the following distribution 
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Under the assumed statistical model, ( | )k kp Y z is given by 
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and the conditional mean { }|k kE z Y is then given by 
 

{ } 0

0

2

20

2

20

2

( | ) ( )
|

( | ) ( )

| |1 1
exp

1 (1 ) ( )( )

( )

| |1 1 1
exp

1 (1 ) ( )( )

( )

| |( )
,

( ) ( )

k k k k k

k k

k k k k

k k
k

k k DX
k

D

k
k

k k DX
k

D

kX

D D

z p Y z p z dz
E z Y

p Y z p z dz

z Y
dz

z z kk
z

k

Y
dz

z z kk
z

k

Yk
f

k k

λλ

λ

λλ

λ

λ

λ λ

∞

∞

∞

∞

⋅ ⋅
=

⋅

⋅ ⋅ − ⋅
+ +

+

=

⋅ ⋅ − ⋅
+ +

+

 (16) 

Note that the expression for this final solution 
incorporates the previous amplitude estimate ( )X kλ  and 
thus can be thought of as “decision-directed” in the same 
sense as the traditional method of equation (1). This new 
function is evaluated by using numerical integration.  

4. EXPERIMENTAL RESULTS 

To evaluate the performance of the new estimator, logSTSA 
enhancements are performed over 10 speech utterances 
taken from the TIMIT database[8]. A frame size of 32 ms 
with 75% overlap is used. Three different experimental runs 
are implemented 
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Fig. 1. A priori SNR estimated by 3 different methods in logSTSA filter. 

1) logSTSA filter with ML estimator from (5) and (6). 
2) logSTSA filter with D-D estimator from (1). 
3) logSTSA filter with proposed estimator from (16). 

 
The logSTSA filter itself is implemented using 
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The D-D weighting factor is taken as 0.98α =  and the 
parameters for equation (5) and (6) are 0.725a = , 2b = . 
The a priori SNR is limited from -50dB to 50dB. White 
noise is added to each utterance at an Segmental SNR 
(SSNR) level of -10, -5, 0, +5, +10 dB. The noise spectrum 
is estimated by averaging the first 3 frames of each noisy 
utterance. 

Evaluation of the method was done by comparing SNR 
estimation accuracy, objectively measuring quality of the 
enhanced signal through SSNR improvement, and by 
subjectively comparing spectrogram results. 

An estimation comparison of the aforementioned three 
estimators is presented in Fig. 1. For the example plots in 
this figure, the frequency index bin k is 17, representing a 
center frequency of 562.5 Hz. The plots show the estimated 
a priori SNR (dB) and true a priori SNR in this specific 
frequency bin across the frames of a 0dB SSNR noisy 
utterance. Compared with the ML estimator, the proposed 
method avoids sudden drops and updates the estimate more 
smoothly. Qualitatively, this results in suppressing the 
musical noise often associated with the ML estimator. In 
high SNR regions, the proposed estimator matches the true 
value with smaller delay than the D-D estimator. 

Fig. 2. Mean square errors of three estimation methods. 
 
An example of mean square errors of the three 

estimation methods are shown in Fig. 2. This plot shows the 
averaged results across a 20 frame segment of the same 
utterance as in Fig. 1. Within the typical speech frequency 
range, 1000~5000 Hz, the proposed estimator has lower 
estimation error than both ML and D-D approaches. The 
quantitative results are shown in Table 1, including averaged 
results of MSE, median squared error (Med), standard 
derivation (Std) and interquartile range (IQR, 75%~25%). 
The proposed estimator has the lowest value for all four 
measures, which indicates this algorithm makes fewer 
estimation errors and is more reliable and robust.  
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Table 1. Estimation error. 
 MSE (dB) Std Median IQR 

ML 168.51 230.89 366.97 25.76 
D-D 110.60 162.23 160.03 10.03 

Proposed 55.23 99.58 14.70 8.08 
 

Objective evaluation results of logSTSA enhancement 
methods with three a priori SNR estimators are shown in 
Fig. 3. The averaged SSNR improvement from 10 utterances 
show that the proposed method has about 0.7 dB higher 
SSNR improvement than the original D-D estimator in the 
logSTSA filter. The higher SSNR results of ML are at the 
cost of introducing more musical noise. 

Fig. 3. SSNR evaluation of logSTSA filter with three a 
priori SNR estimators. 

 
Fig. 4. Spectrograms of enhanced utterance by logSTSA 

filter with three a priori SNR estimators. 

 
From the example spectrum in Fig. 4 we see that 

although improvement in SSNR is achieved by the ML 
estimator, a “musical noise” effect, consisting of small, 
isolated peaks in the spectrum, is introduced. Like the D-D 
estimator, the proposed estimator can suppress this artifact, 
due to the implicit smoothing action. Additionally, it can be 
seen that the proposed estimator helps preserve weak speech 
segment information more than D-D estimator, as shown in 
the highlighted rectangular areas, which also matches the 
estimation error results in Fig. 2. 

5. CONCLUSION 

A new a priori SNR estimator for speech enhancement 
is introduced in this paper. Unlike previous approaches to 
SNR estimation, this estimator is derived in the MMSE 
sense. The solution shows that this estimator implicitly 
incorporates the smoothing behavior of the original D-D 
estimator. Comparative results have shown that use of the 
proposed estimator in a logSTSA speech enhancement filter 
can effectively reduce noise as well as help preserve weak 
speech segment information. 
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